Sinx 2 Cosx 2 1
Trigonometric Identities |
(Math | Trig | Identities) |
sin(theta) = a / c | csc(theta) = 1 / sin(theta) = c / a |
cos(theta) = b / c | sec(theta) = i / cos(theta) = c / b |
tan(theta) = sin(theta) / cos(theta) = a / b | cot(theta) = i/ tan(theta) = b / a |
sin(-x) = -sin(10)
csc(-x) = -csc(x)
cos(-10) = cos(x)
sec(-x) = sec(x)
tan(-10) = -tan(x)
cot(-x) = -cot(x)
sin^two(x) + cos^two(x) = 1 | tan^two(x) + 1 = sec^ii(x) | cot^2(x) + 1 = csc^two(x) | |
sin(x y) = sin x cos y cos ten sin y | |||
cos(x y) = cos x cosy sin x sin y |
tan(10 y) = (tan 10 tan y) / (1 tan x tan y)
sin(2x) = ii sin x cos x
cos(2x) = cos^2(x) - sin^2(x) = ii cos^two(x) - 1 = 1 - 2 sin^2(x)
tan(2x) = 2 tan(x) / (1 - tan^ii(x))
sin^ii(ten) = ane/two - 1/2 cos(2x)
cos^2(x) = 1/2 + 1/2 cos(2x)
sin x - sin y = 2 sin( (10 - y)/2 ) cos( (x + y)/2 )
cos 10 - cos y = -ii sin( (x - y)/2 ) sin( (x + y)/ii )
angle | 0 | 30 | 45 | 60 | ninety |
---|---|---|---|---|---|
sin^2(a) | 0/4 | 1/4 | 2/4 | 3/four | 4/4 |
cos^2(a) | 4/4 | three/4 | 2/4 | 1/4 | 0/4 |
tan^2(a) | 0/4 | ane/3 | 2/2 | iii/1 | 4/0 |
Given Triangle abc, with angles A,B,C; a is opposite to A, b opposite B, c reverse C:
a/sin(A) = b/sin(B) = c/sin(C) (Police force of Sines)
c^2 = a^ii + b^2 - 2ab cos(C) b^2 = a^2 + c^2 - 2ac cos(B) a^2 = b^2 + c^ii - 2bc cos(A) | (Police of Cosines) |
(a - b)/(a + b) = tan [(A-B)/2] / tan [(A+B)/2] (Constabulary of Tangents)
Sinx 2 Cosx 2 1,
Source: http://www.math.com/tables/trig/identities.htm
Posted by: underwoodcolowerve.blogspot.com
0 Response to "Sinx 2 Cosx 2 1"
Post a Comment